1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
| import math, csv, os import numpy as np import pandas as pd from tqdm import tqdm import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader, random_split from torch.utils.tensorboard import SummaryWriter
device = 'cuda' if torch.cuda.is_available() else 'cpu' config = { 'seed': 114514, 'select_all': True, 'valid_ratio': 0.2, 'n_epochs': 50000, 'batch_size': 512, 'learning_rate': 1e-5, 'early_stop': 400, 'save_path': './models/model.ckpt' }
def same_seed(seed): torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
def train_valid_split(data_set, valid_ratio, seed): valid_set_size = int(valid_ratio * len(data_set)) train_set_size = len(data_set) - valid_set_size train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed)) return np.array(train_set), np.array(valid_set)
def select_feat(train_data, valid_data, test_data, select_all=True): y_train, y_valid = train_data[:, -1], valid_data[:, -1] raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data
if select_all: feat_idx = list(range(raw_x_train.shape[1])) else: feat_idx = [0, 1, 2, 3, 4]
return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid
def predict(test_loader, model, device): model.eval() preds = [] for x in tqdm(test_loader): x = x.to(device) with torch.no_grad(): pred = model(x) preds.append(pred.detach().cpu()) preds = torch.cat(preds, dim=0).numpy() return preds
def trainer(train_loader, valid_loader, model, config, device): criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(model.parameters(), lr=config['learning_rate'])
writer = SummaryWriter()
if not os.path.isdir('./models'): os.mkdir('./models')
n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0
for epoch in range(n_epochs): model.train() loss_record = []
train_pbar = tqdm(train_loader, position=0, leave=True)
for x, y in train_pbar: optimizer.zero_grad() x, y = x.to(device), y.to(device) pred = model(x) loss = criterion(pred, y) loss.backward() optimizer.step() step += 1 loss_record.append(loss.detach().item())
train_pbar.set_description(f'Epoch [{epoch + 1}/{n_epochs}]') train_pbar.set_postfix({'loss': loss.detach().item()})
mean_train_loss = sum(loss_record) / len(loss_record) writer.add_scalar('Loss/train', mean_train_loss, step)
model.eval() loss_record =[] for x, y in valid_loader: x, y = x.to(device), y.to(device) with torch.no_grad(): pred = model(x) loss = criterion(pred, y)
loss_record.append(loss.item())
mean_valid_loss = sum(loss_record) / len(loss_record) print(f'Epoch [{epoch + 1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}') writer.add_scalar('Loss/valid', mean_valid_loss, step)
if mean_valid_loss < best_loss: best_loss = mean_valid_loss torch.save(model.state_dict(), config['save_path']) print('Saving model with loss {:.3f}...'.format(best_loss)) early_stop_count = 0 else: early_stop_count += 1
if early_stop_count >= config['early_stop']: print('\nModel is not improving, so we halt the training session.') return
def save_pred(preds, file): with open(file, 'w') as fp: writer = csv.writer(fp) writer.writerow(['id', 'tested_positive']) for i, p in enumerate(preds): writer.writerow([i, p])
class COVID19Dataset(Dataset): def __init__(self, x, y=None): if y is None: self.y = y else: self.y = torch.FloatTensor(y) self.x = torch.FloatTensor(x)
def __getitem__(self, item): if self.y is None: return self.x[item] else: return self.x[item], self.y[item]
def __len__(self): return len(self.x)
class My_Model(nn.Module): def __init__(self, input_dim): super(My_Model, self).__init__() self.layers = nn.Sequential( nn.Linear(input_dim, 16), nn.LeakyReLU(), nn.Linear(16, 8), nn.LeakyReLU(), nn.Linear(8, 1) )
def forward(self, x): x = self.layers(x) print(type(x)) print(x.shape) x = x.squeeze(1) return x
train_data, test_data = pd.read_csv('./covid_train.csv').values, pd.read_csv('./covid_test.csv').values train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])
train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), COVID19Dataset(x_valid, y_valid), COVID19Dataset(x_test)
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True) valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)
model = My_Model(input_dim=x_train.shape[1]).to(device) trainer(train_loader, valid_loader, model, config, device)
model.load_state_dict(torch.load(config['save_path'])) preds = predict(test_loader, model, device) save_pred(preds, 'pred.csv')
|