洛谷P1414 又是毕业季II

洛谷P1414 又是毕业季II

题目背景

“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!

题目描述

彩排了一次,老师不太满意。当然啦,取每位同学的号数来找最大公约数显然不太合理。于是老师给每位同学评了一个能力值。于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大。但因为节目太多了,而且每个节目需要的人数又不知道。老师想要知道所有情况下能达到的最大默契程度是多少。这下子更麻烦了,还是交给你吧~

PS:一个数的最大公约数即本身。

输入格式

第一行一个正整数n。

第二行为n个空格隔开的正整数,表示每个学生的能力值。

输出格式

总共n行,第i行为k=i情况下的最大默契程度。

💡 阅读更多

洛谷P1069 细胞分裂

洛谷 P1069 [NOIP2009 普及组] 细胞分裂

题目描述

HanksHanks 博士是 BTB**T (Bio-TechBioTec**h,生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。

HanksHanks 博士手里现在有 NN种细胞,编号从 1-N1−N,一个第 ii种细胞经过 11 秒钟可以分裂为S_iS**i个同种细胞(S_iS**i为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入MM个试管,形成MM份样本,用于实验。HanksHanks 博士的试管数MM很大,普通的计算机的基本数据类型无法存储这样大的MM值,但万幸的是,MM 总可以表示为m_1m1的m_2m2次方,即M = m_1^{m_2}M=m1m2,其中 m_1,m_2m1,m2均为基本数据类型可以存储的正整数。

注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 44个细胞,

HanksHanks博士可以把它们分入 22 个试管,每试管内22 个,然后开始实验。但如果培养皿中有55个细胞,博士就无法将它们均分入22 个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。

为了能让实验尽早开始,HanksHanks博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入 MM个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。

输入格式

第一行,有一个正整数 NN,代表细胞种数。

第二行,有两个正整数 m_1,m_2m1,m2,以一个空格隔开,即表示试管的总数 M = m_1^{m_2}M=m1m2.

第三行有 N 个正整数,第 i 个数 Si表示第 i 种细胞经过 1 秒钟可以分裂成同种细胞的个数。

输出格式

一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。

如果无论HanksHanks博士选择哪种细胞都不能满足要求,则输出整数-1−1。

输入输出样例

输入 #1复制

1
2
3
1 
2 1
3

输出 #1复制

1
-1

输入 #2复制

1
2
3
2
24 1
30 12

输出 #2复制

1
2

说明/提示

【输入输出说明】

经过 11秒钟,细胞分裂成33 个,经过22秒钟,细胞分裂成99个,……,可以看出无论怎么分裂,细胞的个数都是奇数,因此永远不能分入 22个试管。

【输入输出样例22说明】

第 11 种细胞最早在33 秒后才能均分入2424 个试管,而第22 种最早在22 秒后就可以均分(每试管144/(241)=6144/(241)=6 个)。故实验最早可以在22 秒后开始。

【数据范围】

对于 50%的数据,有m_1^{m_2} ≤ 30000m1m2≤30000。

对于所有的数据,有1 ≤N≤ 10000,1 ≤m_1 ≤ 30000,1 ≤m_2 ≤ 10000,1 ≤ S_i ≤ 2,000,000,0001≤N≤10000,1≤m1≤30000,1≤m2≤10000,1≤S**i≤2,000,000,000。

NOIP 2009 普及组 第三题

💡 阅读更多
Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×